In this, we aim to prove the following theorem
Theorem [Cauchy-Schwarz]. Given ui,vi∈R,
i=1∑nuivi≤i=1∑nui2i=1∑nvi2.
via the following inequality
Theorem [Jensen's]. Given a random vector Z∈Rn and f concave,
E[f(Z)]≤f(E[Z]).
The key is concavity of the function f(x,y):=xpy1−p for x,y>0 and 0≤p≤1. Applying Jensen's to f yields
E[f(X,Y)]≤f(E[X,Y]).
Let X,Y be r.v.'s taking values in {xi},{yi}⊂R>0, both with probabilities {λi}. We analyzie the left and right hand sides of (4).
LHS=E[XpY1−p]=i=1∑nλixipyi1−p
and
RHS=f(i=1∑nλixi,i=1∑nλiyi)=(i=1∑nλixi)p(i=1∑nλiyi)1−p.
Now set λi=1/n and p=1/2. Thus,
LHS=n1i=1∑nx1/2y1/2=n1i=1∑nxiyi
and
RHS=i=1∑nnxii=1∑nnyi=(n1)2i=1∑nxii=1∑nyi.
Cancelling the 1/n on both sides, and performing a change of variables ui:=xi and vi:=yi (recall x,y>0 so we can take square roots) yield
LHS=i=1∑nui2vi2=i=1∑nuivi
and
RHS=i=1∑nui2i=1∑nvi2,
yielding the conclusion for ui,vi>0. The other cases are obvious.